
SPS TIME-SHARING STRING PROCESSING SYSTEM

REF'ERENCE MANUAL

Butler W. Lsmpson

L. Peter Deutsch

Larry L. Barnes

University of California, Berkeley

Document NO. 30.10.20

Issued April 21, 1965

Revised July 2'7, 1966

Contract SD-l.85

Office of Secretary of Defense

Advanced Research Projects Agency

Washington 25, D.C.

TABIS OF CONTENTS

L.0 General.......................l-1

1.1 String Pointer lixd and :;tore Operations l-l

1.2 String Read and Write Operations l-2

1.3 String Compare Operations. l-4

1.4 String Input l-5

1.5 String Output l-5

2.0 The Hash Table Facility 2-l

2.1 Hash Table Syspops and System Subroutines . . . 2-1

2.2 An Application of the Hash Table Facility . . . 2-4

1.0 General

The String Processing System (SPS) consists of eight SYSPGPs and six

system subroutines (BRS instructions). SPS strings are stored three &bit

characters per word. Strings are addressed by two-word pointers. The first

word contains the character address of the character before the fkrst character

of the string. The second word contains the character address of the last

character of the string. The character address of a tiharacter is obtained by

multiplying by 3 the address of the word containing it and adding 0, 1 or 2

depending on its position in the word. All string pointers contain character

addresses. The character pointers used by GCI, GCD, WC1 and WCH must have

the first 8 bits cleared.

- \
c 1 i

The user's attention is called to the string package (SP) which is a

collection of POPS and subroutines for string processing which can be obtained

from a system file and included in the user's program. This package affords

the user a number of additional facilities and considerably greater flexibility

than the resident routines described in this manual.

The following SYSWPs are independent of the hash table mechanism which is

described later. Any of them may be indexed or indirectly addressed (as may

most other SYSpOPs).

1.1 String Pointer Load and Store Operations

LDP OPD 166000ooB,l,1,0,1

LDP ADDR loads the A and B registers with the contents of ADDR and

ADDR+l. X is undisturbed.

I
1..

!’
30.10.20 I

l- 2
July 27, 1966

I
I I ‘- ~ c l

0

STP OPD 16700000B,1,1,0,1

STP ADDR stores the contents of the A and B registers in locatjons

ADDR and ADDR+l. A, B, and X are undistrubed.

1.2 String Read end Write Operations

GCI OPD 1~00000B,1,1,0,1

GCI ADDR tries to load the A register with the f-l.rst character of the

string addressed by the pointer pair in ADDR and ADDR+l. If the string! is

null or empty (i.e., if the contents of ADDR is greater than or equal to

the contents of ADDR+l), then nothing is done and the next instruction in
/

sequence is executed. If the string is not null, its first character is iI
1 /

loaded into A right-justified and the contents of ADDR are incremented by 1, i/

so that the string pointer now points to the string with the first charac,ter ' Ii

deleted. The next instruction in sequence is skipped. tJnless a copy of
I

/!
the orir:inal pointer is saved, the contents of the string! are effectively I,

destroyed by GCI. For example, the code:

GCI STRING

BRU #UT

PR$?CESS

BRU * - 3

@JT . . .

will call the subroutine PR&?ESS with each character of the string addressed.

by STRING and So to @JT after the last character is processed. To save

the contents of STRING, the following commands could have been executed

first:

LDP STRING

STP SAVE

etc.

I .

*

c
‘I
,!

c ‘I /

30.10.20
l-3

July 27, 1966

The X register is not disturbed by GCI. The B register is destroyed.

Timing: 43 cycles.

GCD OFD 13700000B,1,1,0,1

GCD is in every way similar to Cc1 except that the character is taken

from the end of the specified string and the second string pointer is

decremented.

WC1 OPD 157OOOOOB,1,1,0,1

WC1 ADDR writes the character in A on the end of the string addressed by

ADDR. The contents of ADDR+l are incremented by 1. A and X are not

changed. B is destroyed,

To use a WC1 in constructing a string, it is necessary to start with a

null string. Suppose the string is to be put into a 'buffer called LINE

and defined by

LINE BSS 20

The instructions

.LDA =LIRE

=3

LSH 23

STA

STA FTR+1

will make ITR a pointer to a null string beginning (and ending) with the

first character (not the 0th) in LINE. To start with the 0th character

a SUB =l could be inserted after the LSH. LINE can now be filled, say from

the teletype by

TCI CHAR

WC1

BRU * -2

30.10.20
l-4

July %7, 1966

c I,

WCH OPD 15700000B,l,l,O,l

Takes a character in A and a table &dress in the operand field.

The table comprines three words:

ZRO CLB

ZRO CUB

OP ADD

WCH tries to write a character into the area defined by the character

addresses CLB, CUB. Provided that CUEDCLB, WCH will write the character

in A into character position CLB+l and increment CLB. If CLIM%B the

character is not written and control is transferred to the third word of the

table with A, X undisturbed and the address of the offending WCH in B.

This can be an error trap or an exit to a routine which allocates more

memory, by garbage collection or otherwise, for successive WCH's.

1.3 String Compare Operations

SKSE OPD 16300000~,1,1,0,1

SKSE ADDR skips if the string addressed by the pointer in AB is

identicai with the string addressed by ADDR. If the strings are of different

lengths or have different contents, SKSE does not skip. This instruction is

essentially identical to SKE, except that it acts on strings rather than

numbers. A, B, X are not disturbed by SKSE.

. SKSG OPD 16200000~,1,1,0,1

SKSG ADDR skips if the contents of the string addressed by AB is greater

than the contents of the string addressed by ADDR and ADDR-tl. Comparison

is made character by character, and terminates with the first unequal

characters; the numerical, internal code representation of characters is

used to determine inequality. If the strings are equal for the entire
I

length of the shorter one, the longer one is indicated as the greater. I

A, B and X are not disturbed by SKSG.

30.10.20
1-y

July 27, 1966

1.4 String Input

BRS 33

Accepts a string pointer address in A, a file number in X and

a "terminal character" in B. It collects characters from the file and

appends them to the string until the terminal character is seen; this is

not added to the string. It then returns the updated string -pointer in

AR; the string pointer in core is also updated. If bit 0 of A is set on

entry the string is taken as null with the second pointer equal to the

first.

1.5 String Output

BRS 34

c ;I

Accepts a file number in X, a word address in A and a count in 13.

It outputs B consecutive characters starting with the first character of

the specified word. If B--l on entry characters are output until / is

encountered; the character $ is interpreted as carriage return, line feed.

Accepts a'file number in X and a string pointer in AB. It

outputs the string to the file.

c ,/’

/

30.10.20
2-l

July 2'7, 1966

2.0 String Manipulation via a Hash Table

The hash table is a structure for minimizing the effort required to perform

certain scan-end-compare operations when the operands are strings.

A hash table is a contiguous set of j-word "augplented string pointers". The

addresses of the first and last-plus-one locations of the hash table we shall

denote by HT, EHT respectively. Each augmented string pointer occupies three

consecutive locations of the hash table. Bits 8 to 23 of each of the first

two locations hold the actual string pointer; bits 0 to 7 of these two words, as well

as the entire third word (the so-called string "value") ma,y hold arbitrary

information. Note, however, that bits 0 to 7 of the string pointer words must

be zero if used with CC1 or *I.

2.1 The Hash Structure System Subroutines

There are three system subroutines to perform operations on a hash

structure; they are BRS 5, BRS 6, BRS 37. BRS 6 is used to introduce new

string pointers into the structure; the strings will normally have been

created by %I or WCH. BRS 5 and BRS 37 each perform a scan of the hash

table for a string to match a given string.

Before using BRS 5 and BRS 6 to insert string pointers into an

initially empty hash table, the hash table area must be cleared to zeros.

BRS 5

Takes a string pointer in A, B, a table address in X. The table

ccxnprises 3 words

ZRO HT
ZRO EHT
ZRO 0

The first two define the hash table bounds, the third is used for

communication with BRS 6 (q.v.).

~ c- \ . . J

i
‘)

-..

30.10.20

July 27, 1;;;

BRS 5 searches the hash table for a string to match the given one.

If successful it returns in B the address of the hash table string pointer

(the string "index") -- and in A the string "value"; it skips on return.

If the search is UnsucceSsful, BRS 5 returns with A, B unchanged and the

address of the next free table entry in word 3 of the table (this will

be -1 if the table is full). X is not disturbed..

BRS 6

Takes a string pointer in A,B and a table address in X. The table

is as for BRS 5.

BRS 6 inserts the string pointer into the hash table at the point

determined by the last BRS 5 which failed. If the table was then found to

be full, and the "communication word" (third word of the table) is -1,

there is an illegal instruction trap. BRS 6 is intended for use only in

inserting into the hash table a string pointer for which BRS 'j failed to

find a match and should not be used other than after a failing BRS 'j.

Furthermore, string pointers should not be placed in the hash table other

than with BRS 6 (otherwise the scanning algorithm used in BRS 5, BRS 37

will not work). Note that BRS 6 does not physically move the characters

to which (AB) points.

On exit, BRS 6 returns in B the address of the first word of the new

hash table entry and in A, the "value" word of the entry; X is not disturbed.

To delete a hash table entry, put -1 (0) in the first word.

BRS 37

Takes a dual file number in A, a string pointer address in B and, in X,

the address of a 2-word table containing hash table bounds RT, EI-lT. A dual

file number is a single word holding an output file number in the first

12 bits and an input file number in the second. If the output file number

is zero, the user's teletype will be used. The behavior of BRS 37 depends

I .

30.10.20
2-3

JULY a’, 1966
I \
I (-I -1

c “1

on the command recognition mode currently set for the user's Exec.(see the

TSS Exec Manual, Section 5.5).

If the mode iS S3EGSNNEIR, the hash table is scanned for a string to

match exactly the given one. If none IS found but the given string matches

the initial part of some hash table string, characters from the input file

are appended to it until either an exact match is obtained or a match -

becomes impossible, The exit is described below.

If the mode is NOVICE, the hash table is scanned for a string to match

the given one. If none is found but the given string matches the initial part

of some hash table string, characters from the input file are appended until

the string is long enough either to determine a unique hash,table string,

with a matching initial part, or for no match to be possible. In the former

case, if the hash table string now contains 3 or leas as-yet-unmatched

characters, more characters are taken from input until an exact match is

obtained or no match is possible; if the hash table string contains 4 or

more as-yet-unmatched characters these unmatched characters are sent to the

O-P file. If the input file is the teletype, RR5 37 waits until all the

characters have been output, and the input file buffer is cleared before exit.

If the mode is EXPRRT the hash table is scanned for a string to match *

the given one. If none is found but the given string matches the initial

part of some hash table string, characters from the input file are appended

until the string is long enough either to determine a unique hash table

string, with a matching initial part, z for no match to be possible. In

the former case the remaining characters of the hash table string are sent

to the O-P file.

Exits are &S follows:

The no-match condition causes a no-skip exit with a string pointer

in AR to the string so far collected; X is undisturbed. If a match is

found there is a skip exit with 'the hash table string index in A and the

string value in 8; X is undisturbed.

2.2 Example

The following subroutine illustrates a use of the hash table facility.

A string is input from the teletype and appended to WCH string storage until a

carriage return is encountered; it is assumed that string storage does not

overflow in the process. The hash table is then searched for the string; if

it is not already there it is inserted. In any case, an exit is made with

the value of the string in A and the address of the string pointer in 33. On

entry X contains the address of the table for RR9 5, 6. CTL is the address

of a table for WCH.

INPUT

IOOP

WRm

ZRO INPL

CTL remember beginning of string
STA TRMP

TCI CHAR

SKE =155J3 terminate*?

BRU WRmf’

TRMP Yes
LDB CTL
BJ3S' 5

BRS 6

SBRR INPUT

WCH CTL

BRU LOOP

